Abstract

Besides their structural complexity, the acoustic behavior of polymer-based poro-elastic layers is complicated also due to their frequency dependent elasticity. In this work, we address the frequency and temperature dependence of the elastic behavior in general, and the shear modulus in particular, of poro-visco-elastic materials. The analysis is based on the monitoring of mechanically excited guided acoustic wave propagation by means of a laser Doppler vibrometer scanning technique. The concept and practical implementation of the experimental method are presented, as well as the signal processing procedure and data analysis. Experimental data are presented for a polyurethane foam. The observed visco-elastic behavior, complemented with dielectric spectroscopy data, is interpreted in the framework of two underlying relaxation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.