Abstract

The temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence were studied in support of planar laser-induced fluorescence (PLIF) imaging of temperature and mixture fraction in flows of practical interest. The temperature dependencies (300–875 K) of absorption and fluorescence were measured for gaseous 3-pentanoneat atmospheric pressure in a nitrogen bath gas using 248, 266, and 308 nm excitation. The results indicate that the fluorescence signal per unit mole fraction using 248 nm excitation is highly temperature-sensitive below 600 K, while the signal from 308 nm excitation is not temperature sensitive below 500 K. For quantitative measurements over a broad range of temperatures, one must choose excitation schemes carefully to balance the trade-off between measurement sensitivity and the amount of signal at the expected conditions. As an example of such a choice and to show the capabilities of ketone PLIF techniques, we include temperature and mixture fraction images of a 300–650 K heated air jet using near-simultaneous 308 and 266 nm excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.