Abstract
Environmental assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates from 3 to over 40 times the growth rates in air. For low alloy steels with sulfur contents > 0.0125% by weight, EAC is normal behavior in the 240 to 290C range. However, literature yields mixed results for low alloy steels with compositions just below this sulfur level; some reports indicate EAC while others do not. Also, several authors have reported an increased tendency toward EAC when the water temperatures were lowered. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260C. At 260C these forgings did not exhibit EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates strong resistance to EAC for this class of forging at 260C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204C, provided the test conditions (loading frequency, {Delta}K, and R) were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than {approx}2E-6 mm/s. At 204, 121, and 93C, this critical crack growth rate appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260C by raising the dissolved oxygen content of the water from <10 to >15 ppb.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.