Abstract

The reaction pathways for the highly enantioselective, (−)-sparteine-mediated, lithiation−substitution reactions of N-Boc-N-(p-methoxyphenyl)cinnamylamine ((E)-2) have been investigated. The solution structure of the major allyllithium intermediate has been determined by 6Li and 13C NMR to be a monomeric η3 species, endo-syn-anti-8·1. The complexes exo-syn-anti-8·1, endo-syn-syn-8·1, and exo-syn-syn-8·1 are also shown to be present in solution. The enantiodetermining step in the lithiation−silylation or lithiation−alkylation of (E)-2 can involve asymmetric deprotonation, dynamic kinetic resolution, or dynamic thermodynamic resolution. The results reported herein establish that each of these pathways can be operative. This information allows determination of the stereochemical course for each step of these reactions and permits preparation of either epimer at the new stereogenic carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.