Abstract

The influences of temperature, dopant density, free-carrier density, and field orientation on the electron drift mobility and velocity-field relationship in wurtzite <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</i> -axis GaN are quantified by means of theoretical investigation. Electron velocity perpendicular to the growth plane is uniformly lower than that parallel to the growth plane for field strengths below 500 kV/cm, although anisotropy within the basal plane itself is found to be insignificant. The calculated low-field electron mobility is demonstrated to be consistent with recent Hall measurements over a range of dopant densities. Low-field mobility is enhanced under the influence of free-carrier densities above the background doping due to both increased screening of ionized impurities and a reduction in A1-LO phonon lifetime through the plasmon-phonon interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.