Abstract

Dielectric spectroscopy measurements over a broad range of temperature and pressure were carried out on poly(oxybutylene) (POB), a type-A polymer (dielectrically-active normal mode). There are three dynamic processes appearing at lower frequency, the normal and segmental relaxation modes, and a conductivity arising from ionic impurities. In combination with pressure-volume-temperature measurements, the dielectric data were used to assess the respective roles of thermal energy and density in controlling the relaxation times and their variation with T and P. We find that the local segmental and the global relaxation times are both a single function of the product of the temperature times the specific volume, with the latter raised to the power of 2.65. The fact that this scaling exponent is the same for both modes indicates they are governed by the same local friction coefficient, an idea common to most models of polymer dynamics. Nevertheless, near Tg, their temperature dependences diverge. The magnitude of the scaling exponent reflects the relatively weak effect of density on the relaxation times. This is usual for polymers, as the intramolecular bonding, and thus interactions between directly bonded segments, are only weakly sensitive to pressure. This insensitivity also means that the chain end-to-end distance is invariant to P, conferring a near pressure-independence of the (density-normalized) normal mode dielectric strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.