Abstract

Drinking water wells require continuous monitoring to prevent groundwater-related issues such as pollution, clogging and overdrafting. In this research, optical fibers with fiber Bragg grating sensors were placed in an aquifer to explore their potential use in long-term well monitoring. Fiber Bragg grating sensors were simultaneously sensitive to consolidation strain and temperature, and these two responses were separated by creating autoregressive consolidation models. Consolidation responses from these multiple sensors were rescaled to obtain pressure distribution along the depth. Pressure and temperature data showed impermeable soil layers and locations where groundwater accumulated. Time development of temperature along the fiber revealed oxidation of minerals and soil layers with varying permeability. Fiber Bragg grating sensors are useful tools to examine subsurface processes near wells and they can show the first signs of clogging.

Highlights

  • Groundwater, as the cleanest source for public drinking water supply, is extracted from aquifers through wells

  • We explore the potential of fiber Bragg grating (FBG) sensors for groundwater monitoring in a drinking water well field

  • FBG sensors were placed near a drinking water well to investigate the possibilities for groundwater monitoring

Read more

Summary

Introduction

Groundwater, as the cleanest source for public drinking water supply, is extracted from aquifers through wells. Series of pumping tests are performed before a well starts long-term extraction. Pumping tests are the most suitable way to determine groundwater quality, aquifer properties and appropriate depth of the pump from single observation points [1]. Groundwater is extracted from the well at a controlled rate and water levels are observed in monitoring wells. The aquifer properties calculated from pumping tests are hydraulic conductivity, storage coefficient, and specific yield [2]. These values are used to estimate the radius of influence of the area affected by pumping [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.