Abstract

The stiffness constants, c ij , of monocrystalline Ni3Al of three different compositions, 23.2, 24.0, and 25.0 at. pct Al, were measured over the temperature range from 300 to 1100 K using the rectangular parallelepiped resonance (RPR) method. The bulk modulus, as well as the shear modulus, Young’s modulus, and Poisson’s ratio for randomly oriented polycrystalline stoichiometric Ni3Al, were derived from the stiffness constants. The data indicate that c 44 is essentially independent of composition, decreasing slightly with increasing temperature for all three alloys. The values of c 11 and c 12, however, decrease with increasing aluminum content, the difference being small at room temperature but becoming larger at higher temperatures. We find that c 11 and c 12 are not as sensitive to aluminum concentration as is implied by previous results. A comparison of different shear moduli of Ni3Al and the saturated Ni-Al solid solution in equilibrium with it indicates that the ordered phase is generally elastically stiffer than the solid solution over the range of temperatures at which coarsening of the Ni3Al precipitate has been heavily investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.