Abstract

Campylobacter spp. are small, asaccharolytic bacteria exhibiting unique nutritional and environmental requirements. Campylobacter spp. exist as commensal organisms in some animal species, yet are estimated to be the most common causative agents of foodborne illness in humans. C. jejuni is most often associated with poultry, while C. coli are more frequently associated with swine. Temperature has been suggested to trigger potential colonization or virulence factors in C. jejuni, and recent studies have demonstrated temperature-dependent genes are important to colonization. It is possible that temperature-dependent colonization factors are in part responsible for the species-specific colonization characteristics of C. coli also. We determined utilization of 190 different sole carbon substrates by C. coli ATCC 49941 at 37 and 42°C using phenotype microarray (PM) technology. Temperature did affect amino acid utilization. L-asparagine and L-serine allowed significantly (P = 0.004) more respiration by C. coli ATCC 49941 at the lower temperature of 37°C as compared to 42°C. Conversely, L-glutamine was utilized to a significantly greater extent (P = 0.015) at the higher temperature of 42°C. Other organic substrates exhibited temperature-dependent utilization including succinate, D,L-malate, and propionate which all supported active respiration by C. coli to a significantly greater extent at 42°C. Further investigation is needed to determine the basis for the temperature-dependent utilization of substrates by Campylobacter spp. and their possible role in species-specific colonization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.