Abstract

ABSTRACTObjective: Temozolomide (TMZ) improves Glioblastoma Multiforme (GBM) patient survival. The invasive behavior of the glioma cells is the cause of GBM relapse. The glioma BK ion channel (gBK) may provide glioma cells with a mechanism to invade surrounding tissue. gBK contains epitopes that cytolytic T lymphocytes (CTLs) can recognize and kill glioma cells. Fascin-1 is an actin crosslinking molecule that supports microvilli; these membrane protrusions provide a physical defense against CTLs. TMZ was investigated to determine its effect on gBK and fascin-1 expression.Research design and methods: Human glioma cells cultured in TMZ were analyzed for their altered mRNA and gBK protein levels by using quantitative real time PCR, immunostaining and cellular functional assays.Results: TMZ slowed glioma cell growth and inhibited their transmigratory properties due to loss of fascin-1. TMZ induced increased gBK and HLA expression and allowed these TMZ-treated cells to become better targets for gBK-specific CTLs.Conclusions: Besides its traditional chemotherapeutic effect, TMZ can have four other targeted pathways: 1) slowed glioma cell growth; 2) inhibited glioma cell transmigration; 3) increased HLA-A2 and gBK tumor antigen production; 4) increased CTL-mediated cytolysis of the TMZ treated glioma cells due to the loss of their defensive membrane protrusions supported by fascin-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call