Abstract

ABSTRACTThe structural quality of GaAs layers grown at 200°C by molecular beam epitaxy (MBE) was investigated by transmission electron microscopy (TEM). We found that a high crystalline perfection can be achieved in the layers grown at this low temperature for thickness up to 3 μm. In some samples we observed pyramid-shaped defects with polycrystalline cores surrounded by microtwins, stacking faults and dislocations. The size of these cores increased as the growth temperature was decreased and as the layer thickness was increased. The upper surface of layers with pyramidal defects became polycrystalline at a critical thickness of the order of 3μm. We suggested that the low-temperature GaAs becomes polycrystalline at a critical thickness either because of a decrease in substrate temperature during growth or because strain induced by excess As incorporated in these layers leads to the formation of misoriented GaAs nuclei, thereby initiating polycrystalline growth. The pyramidal shape of the defects results from a growth-rate hierarchy of the low index planes in GaAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call