Abstract

ABSTRACTDissociation of both basal and prism plane dislocations in sapphire,α−Al2O3,is common and the partial dislocations can be imaged using conventional transmission electron microscopy and weak beam dark field imaging techniques. At elevated temperatures the dissociation takes place by conservative self-climb, a process involving short range diffusion, whereas at low temperatures the dissociation can occur by glide. Dissociation of a dislocation can in some situations give rise to very strong contrast when using g vectors for which g→.b→=0 for the undissociated dislocation. Those contrast conditions can be used to obtain information about the dislocation morphology and the stacking fault energy of the fault plane through determination of the separation distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.