Abstract

Trapped electron modes (TEMs) in tokamak plasmas with anisotropies of electron temperature and its gradient are studied by solving the gyrokinetic integral eigenmode equation. Detailed numerical analyses indicate that, in comparison with that in plasmas of isotropic electron temperature, TEMs are enhanced (weakened) by the anisotropy with temperature in the direction perpendicular to magnetic field higher (lower) than that in the direction parallel to the magnetic field when the latter is kept constant. However, the enhancement is limited such that TEMs are weakened rapidly and even stabilized when the anisotropy is higher than a critical value owing to an effective reduction of bounce movement of the trapped electrons. In addition, it is found that the gradients of perpendicular and parallel temperatures of electrons have driving and suppressing effects on the TEMs, respectively. The overall effects of the temperature gradients of electrons and ions, magnetic shear, safety factor, and density gradient on TEMs in the presence of the anisotropies are presented in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.