Abstract
The corrosion behavior of hard metals with VC and Cr 3C 2 grain growth inhibitors was investigated in alkaline solutions by electrochemical methods. The two inhibitors have opposite effects on the corrosion behavior: Cr 3C 2 significantly improves the corrosion behavior, whereas VC-containing alloys show a poor resistance. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and analytical transmission electron microscopy (TEM) analyses of the distributions of Cr and V in the composite material, as well as in the surface layers formed during corrosion were employed to clarify the influence of these elements on the corrosion behavior. The measurements showed that VC is precipitated mostly along the WC/binder interface after the liquid-phase sintering process, while Cr 3C 2 is almost homogeneously dissolved in the binder. As VC is chemically instable in alkaline solutions, it completely dissolves out of the binder. In accordance with this observation no V was found in the corrosion product layer on the surface. As WC is more noble than Co, galvanic coupling between the two phases reinforces the Co dissolution, while the WC-phase is protected cathodically. Contrary to VC, chromium is stable in alkaline environments and forms a passivating Cr 2O 3 layer. Enrichment of Cr in the corrosion product layers was detected by TEM and ToF-SIMS. Due to surface passivation by Cr 2O 3, galvanic coupling effects between Co and WC play a much less important role in the corrosion process of the composite material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Refractory Metals and Hard Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.