Abstract

The recent observations of visible light emission from porous silicon layers (PSL) have attracted much interest due to its potential applications in silicon based optoelectronic integrated circuits, optical memories and advanced display systems. To realize these potential applications this material must be fully characterized. Specifically, the microstructure must be studied in order to understand the origin of the light emission. Unfortunately, the issue of the detailed geometry of porous silicon is not fully resolved because of the difficulty in performing transmission electron microscopy (TEM) measurements on these fragile structures. One of the first microstructural studies on visible emitting PSL, presented by Cullis and Canham, showed the material to be composed of needle-like structures having a cross sectional diameter of 3nm. It was suggested that the visible luminescence in this material is due to quantum confinement of these small structures. A major limitation of this work was the method of TEM sample preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.