Abstract

Escherichia coli CF349 exhibited a complex beta-lactam resistance phenotype, including resistance to amoxicillin and ticarcillin alone and in combination with clavulanate and to some extended-spectrum cephalosporins. The double-disk synergy test was positive. CF349 harbored an 85-kb conjugative plasmid which encoded a beta-lactamase of pI 5.9. The corresponding bla gene was identified by PCR and sequencing as a bla(TEM) gene. The deduced protein sequence revealed a new complex mutant of TEM-1 beta-lactamase designated TEM-109 (CMT-5). TEM-109 contained both the substitutions Glu104Lys and Arg164His of the expanded-spectrum beta-lactamase (ESBL) TEM-6 and Met69Leu of the inhibitor-resistant TEM-33 (IRT-5). TEM-109 exhibited hydrolytic activity against ceftazidime similar to that of TEM-6 (k(cat), 56 s(-1) and 105 s(-1), respectively; K(m) values, 226 and 247 microM, respectively). The 50% inhibitory concentrations of clavulanate and tazobactam (0.13 microM and 0.27 microM, respectively) were 5- to 10-fold higher for TEM-109 than for TEM-6 (0.01 and 0.06 microM, respectively) but were almost 10-fold lower than those for TEM-33. The characterization of this novel CMT, which exhibits a low level of resistance to inhibitors, highlights the emergence of this new ESBL type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.