Abstract
The terminal DNA arrays on chromosomes of Drosophila melanogaster are composed of two families of non-LTR retrotransposons, HeT-A and TART. Available evidence suggests that chromosome length in this species and its close relatives is maintained by targeted transposition of these elements, with attachment of the elements to the chromosome end by their 3' oligo(A) tails. However, the regulation of transposition of these elements and the control of telomere length are poorly understood. Here we present the hypothesis that the forces involved in telomere length regulation in Drosophila are the underlying forces that manifest themselves as telomeric position effect (TPE). Based on recent studies of TPE, which found that expression of a reporter gene is influenced by telomere structure in cis and trans, we propose that the subtelomeric satellite (TAS) in D. melanogaster plays an important role in controlling telomere elongation. Transcription of a HeT-A element is probably initiated at a promoter in the 3' UTR of an upstream element, and TAS may repress this transcriptional activity in cis and trans. A region of HeT-A not at the extreme 3' end of the element may act as a transcriptional enhancer that may be modulated by TAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.