Abstract

Telomere shortening is thought to contribute to premature senescence of satellite cells in Duchenne muscular dystrophy (DMD) muscle. Telomeric repeat binding factor-1 (TRF1) and poly (ADP-ribose) polymerase-1 (PARP1) are proteins known to modulate telomerase reverse transcriptase (TERT) activity, which controls telomere elongation. Here we show that an age-dependent telomere shortening occurs in DMD muscles and is associated to overexpression of mRNA and protein levels of TRF1 and PARP1. TERT expression and activity are detectable in normal control muscles and they slightly increase in DMD. This is the first demonstration of TRF1 and PARP1 overexpression in DMD muscles. They can be directly involved in replicative senescence of satellite cells and/or in the pathogenetic cascade through a cross-talk with oxidative stress and inflammatory response. Modulation of these events by TRF1 or PARP1 inhibition might represent a novel strategy for treatment of DMD and other muscular dystrophies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.