Abstract

Purpose: In recent years, growing epidemiological evidence has linked ionizing radiation exposure to cardiovascular atherosclerotic disease. However, there are still major gaps in the knowledge of the molecular mechanisms of radiation-induced vascular disease, especially for low-dose levels. Telomeres, repetitive DNA sequences of (TTAGGG)n located at the ends of eukaryotic chromosomes, play a role in regulating vascular aging, and shorter leukocyte telomere length has been demonstrated to predict cardiovascular disease and mortality. There is also evidence supporting the crucial role of telomeres in the formation of chromosome and chromatid aberrations induced by ionizing radiation.Conclusions: The purpose of the present paper is to review the recent advances in the biological mechanisms determining telomere length erosion after ionizing radiation exposure as well as to examine the hypothesis that telomere shortening may be the crucial mediator leading to detrimental vascular effects after ionizing radiation exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.