Abstract

BackgroundTelomerase is an enzyme that catalyzes the addition of nucleotides on the ends of chromosomes. Rare loss of function mutations in the gene that encodes the protein component of telomerase (TERT) have been described in patients with idiopathic pulmonary fibrosis (IPF). Here we examine the telomere lengths and pulmonary fibrosis phenotype seen in multiple kindreds with heterozygous TERT mutations.Methods and FindingsWe have identified 134 individuals with heterozygous TERT mutations from 21 unrelated families. Available medical records, surgical lung biopsies and radiographs were evaluated retrospectively. Genomic DNA isolated from circulating leukocytes has been used to measure telomere lengths with a quantitative PCR assay. We find that telomere lengths of TERT mutation carriers decrease in an age-dependent manner and show progressive shortening with successive generations of mutation inheritance. Family members without TERT mutations have a shorter mean telomere length than normal, demonstrating epigenetic inheritance of shortened telomere lengths in the absence of an inherited TERT mutation. Pulmonary fibrosis is an age-dependent phenotype not seen in mutation carriers less than 40 years of age but found in 60% of men 60 years or older; its development is associated with environmental exposures including cigarette smoking. A radiographic CT pattern of usual interstitial pneumonia (UIP), which is consistent with a diagnosis of IPF, is seen in 74% of cases and a pathologic pattern of UIP is seen in 86% of surgical lung biopsies. Pulmonary fibrosis associated with TERT mutations is progressive and lethal with a mean survival of 3 years after diagnosis. Overall, TERT mutation carriers demonstrate reduced life expectancy, with a mean age of death of 58 and 67 years for males and females, respectively.ConclusionsA subset of pulmonary fibrosis, like dyskeratosis congenita, bone marrow failure, and liver disease, represents a “telomeropathy” caused by germline mutations in telomerase and characterized by short telomere lengths. Family members within kindreds who do not inherit the TERT mutation have shorter telomere lengths than controls, demonstrating epigenetic inheritance of a shortened parental telomere length set-point.

Highlights

  • Telomerase is a multimeric ribonucleoprotein enzyme that catalyzes the addition of repetitive DNA sequence to telomeres, specialized structures at the ends of chromosomes

  • We have identified 21 different families with heterozygous coding mutations in the gene encoding the protein component of telomerase, TERT (Figure 1 and Table S1)

  • There was no difference between telomere lengths of the reference population and the unrelated spouses, but we find that the mean telomere length of related family members without a TERT mutation was significantly shorter than the reference population (P-value = 1.0161025)

Read more

Summary

Introduction

Telomerase is a multimeric ribonucleoprotein enzyme that catalyzes the addition of repetitive DNA sequence to telomeres, specialized structures at the ends of chromosomes. Mutations in the genes encoding the telomerase complex were first found in patients with dyskeratosis congenita (DKC), and in patients with bone marrow failure syndromes, pulmonary fibrosis and liver disease. While these are very different clinical diseases, a subset of each share a common pathogenesis related to short telomere lengths due to inherited germline telomerase mutations. Rare loss of function mutations in the gene that encodes the protein component of telomerase (TERT) have been described in patients with idiopathic pulmonary fibrosis (IPF). We examine the telomere lengths and pulmonary fibrosis phenotype seen in multiple kindreds with heterozygous TERT mutations

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call