Abstract

Antioxidants and telomere length are potential biomarkers for individuals’ exposure and ability to cope with environmental stressors. However, intraspecific variations in antioxidant alterations due to natural, life cycle related stress, have been rarely estimated. We investigated those changes in wild-derived house mice in a longitudinal study with natural sibling competition as a stressor. Blood was used for telomere length measurements at 8-weeks age and for several selected antioxidants at 8-weeks and 6-months age. Our results show that most of the antioxidants increase during that time, indicating that antioxidant-system continues to develop after early development and sexual maturation. In addition females had higher antioxidant-levels than males. Mice with longer telomeres had also higher superoxide dismutase-activity and more glutathione than mice with shorter telomeres, meaning that long telomeres are associated with better antioxidant defense at maturation and during later life. Sibling competition at early age affected superoxide dismutase-levels at 6-months, but only in females. Females, which were lighter than the average of the litter had low superoxide dismutase –activity in later adulthood, indicating delayed negative effect of sibling competition on antioxidant defense. Our results highlight that sex and developmental stage are crucial in intraspecific comparisons of the antioxidant status and its alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call