Abstract

Telomere length is similar in different organs of the human fetus but variable among fetuses. During extrauterine life telomere length is highly variable among individuals and longer in women than men. In the present work we addressed the following questions: 1) Are there sex-related differences in telomere length at birth? 2) Is there synchrony (i.e. correlation in length) of telomeres in tissues within the newborn? 3) Is the variability in telomere length among newborns as large as that in adults? We studied normal male and female newborns who donated DNA samples from three sources: white blood cells, umbilical artery, and foreskin. Telomere length was measured by the mean length of the terminal restriction fragments (TRF). TRF length was not different between male and female newborns. It was highly synchronized among the DNA samples from white blood cells, umbilical artery and skin within individual donors but exhibited a high variability among donors. We conclude that there is no evidence for the effect of sex on telomere length at birth, suggesting that longer telomeres in women than men arise from a slower rate of telomeric attrition in women. The variability in telomere length among newborns and synchrony in telomere length within organs of the newborn are consistent with the concept that variations in telomere length among adults are in large part attributed to determinants (genetic and environmental) that start exerting their effect in utero.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call