Abstract

BackgroundTelomere length is considered as a biomarker of aging, stress, cancer. It has been associated with many chronic diseases such as hypertension and diabetes. Although, telomere shortening due to ionizing radiation has been reported in vitro, no in vivo data is available on natural background radiation and its effect on telomere length.Methodology/Principal FindingsThe present investigation is an attempt to determine the telomere length among human adults residing in high level natural radiation areas (HLNRA) and the adjacent normal level radiation areas (NLNRA) of Kerala coast in Southwest India. Genomic DNA was isolated from the peripheral blood mononuclear cells of 310 individuals (HLNRA: N = 233 and NLNRA: N = 77). Telomere length was determined using real time q-PCR. Both telomere (T) and single copy gene (S) specific primers were used to calculate the relative T/S and expressed as the relative telomere length. The telomere length was determined to be 1.22±0.15, 1.12±0.15, 1.08±0.08, 1.12±0.11, respectively, among the four dose groups (≤1.50, 1.51–3.00, 3.01–5.00 and >5.00 mGy per year), which did not show any dose response. The results suggested that the high level natural chronic radiation did not have significant effect on telomere length among young adult population living in HLNRA, which is indicative of better repair of telomeric ends. No significant difference in telomere length was observed between male and female individuals. In the present investigation, although the determination of telomere length was studied among the adults with an age group between 18 to 40 years (mean maternal age: 26.10±4.49), a negative correlation was observed with respect to age. However, inter-individual variation was (0.81–1.68) was clearly observed.Conclusions/SignificanceIn this preliminary investigation, we conclude that elevated level of natural background radiation has no significant effect on telomere length among the adult population residing in HLNRAs of Kerala coast. To our knowledge, this is the first report from HLNRAs of the world where telomere length was determined on human adults. However, more samples from each background dose group and samples from older population need to be studied to derive firm conclusions.

Highlights

  • High Level Natural Radiation Areas (HLNRA) in the world provide ample opportunities to study the biological and health effects of natural chronic low level radiation directly on humans

  • The non-uniform distribution of radiation exposure prevailing in monazite bearing high level natural radiation areas (HLNRA) of Kerala coast in South west India gives an unique opportunity to conduct in vivo dose response studies on humans

  • Relative Telomere Length In the present study, telomere length was determined from the peripheral blood mononuclear cells (PBMC) of a total of 310 normal and healthy young adults (141 males and 169 females) from high and normal level natural background radiation areas of Kerala coast in south west India

Read more

Summary

Introduction

High Level Natural Radiation Areas (HLNRA) in the world provide ample opportunities to study the biological and health effects of natural chronic low level radiation directly on humans. The non-uniform distribution of radiation exposure prevailing in monazite bearing HLNRA of Kerala coast in South west India (contains 8–10% of thorium, highest in the world) gives an unique opportunity to conduct in vivo dose response studies on humans. This costal belt is approximately 55 kms long and 0.5 km wide, extending from Neendakara (Kollam district) in south to Purakkadu (Alapuzha district) in north [1]. Similar trend was observed when regression analysis of the telomere length with respect to age was performed among male (R2 = 0.0004, y = 20.001x +1.0864) and female (R2 = 0.0074, y = 20.0033x +1.2136) individuals separately

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call