Abstract

There are controversial reports on the restoration of eroded telomere length in offspring produced by somatic cell nuclear transfer (SCNT) in different animal species. To the best of our knowledge, no earlier studies report the telomere length in naturally produced or cloned animals in any of the camelid species. Therefore, the present study was conducted to estimate the telomere length in dromedary camels produced by SCNT, the donor cells, and their age-matched naturally produced counterparts by Terminal Restriction Fragment (TRF) length analysis and real-time Q PCR T/S ratio methods. Genomic DNA was extracted from venous blood collected from 6 cloned animals and their age-matched counterparts. Using the southern blot technique, digested DNA was blotted onto a positively charged nylon membrane, and its hybridization was carried out using telomere (TTAGGG)n specific, DIG-labeled hybridization probe (Roche Diagnostics, Germany) at 42 °C for 4 h. Stringent washes were carried out at the same temperature, followed by a chemiluminescence reaction. The signals were captured using the Azure Biosystems C600 gel documentation system. A TeloTool program from MATLAB software with a built-in probe intensity correction algorithm was used for TRF analysis. The experiment was replicated three times, and the data, presented as mean ± SEM, were analyzed using a two-sample t-test (MINITAB statistical software, Minitab ltd, CV3 2 TE, UK). No difference was found in the mean telomere length of cloned camels when compared to their naturally produced age-matched counterparts. However, the telomere length was more (P < 0.05) than that of the somatic cells used for producing the SCNT embryos. A moderate positive Pearson correlation coefficient (r = 0.6446) was observed between the telomere lengths estimated by TRF and Q PCR T/S ratio method. In conclusion, this is the first study wherein we are reporting telomere length in naturally produced and cloned dromedary camels produced by somatic cell nuclear transfer. We found that telomere lengths in cloned camels were similar to their age-matched naturally produced counterparts, suggesting that the camel cytoplast reprograms the somatic cell nucleus and restores the telomere length to its totipotency stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.