Abstract

Background: Observational studies have suggested that there may be an association between telomere length (TL) and hearing loss (HL). However, inferring causality from observational studies is subject to residual confounding effects, reverse causation, and bias. This study adopted a two-sample Mendelian randomization (MR) approach to evaluate the causal relationship between TL and increased risk of HL. Methods: A total of 16 single nucleotide polymorphisms (SNPs) associated with TL were identified from a genome-wide association study (GWAS) meta-analysis of 78,592 European participants and applied to our modeling as instrumental variables. Summary-level data for hearing loss (HL), age-related hearing loss (ARHL), and noise-induced hearing loss (NIHL) were obtained from the recent largest available GWAS and five MR analyses were used to investigate the potential causal association of genetically predicted TL with increased risk for HL, including the inverse-variance-weighted (IVW), weighted median, MR-Egger regression, simple mode, and weighted mode. In addition, sensitivity analysis, pleiotropy, and heterogeneity tests were also used to evaluate the robustness of our findings. Results: There was no causal association between genetically predicted TL and HL or its subtypes (by the IVW method, HL: odds ratio (OR) = 1.216, p = 0.382; ARHL: OR = 0.934, p = 0.928; NIHL: OR = 1.003, p = 0.776). Although heterogenous sites rs2736176, rs3219104, rs8105767, and rs2302588 were excluded for NIHL, the second MR analysis was consistent with the first analysis (OR = 1.003, p = 0.572). Conclusion: There was no clear causal relationship between shorter TLs and increased risk of HL or its subtypes in this dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call