Abstract

Human telomeres are essential for genome stability and are composed of long simple tandem repeat arrays (STRs), comprising the consensus TTAGGG repeat interspersed, at the proximal end, with sequence-variant repeats. While the dynamics of telomere attrition through incomplete replication has been studied extensively, the effects on telomeres of error-prone DNA repair processes, known to affect other STRs, are poorly understood. We have compared the TTAGGG and sequence-variant interspersion patterns in the proximal 720 bp of telomeres in colon cancer and normal DNA samples. The frequency of telomere mutations was 5.8% per allele in a randomly collected panel of sporadic colon cancers, showing that telomere mutations occur in vivo. The mutation frequency rose to 18.6% per allele in sporadic tumours that exhibit instability at the polyA tract in the TGFbetaRII gene and to 35% per allele in tumours with somatic mutations in the hMSH2 gene. The majority of the characterized mutations resulted in the loss of one or a few repeats. If the mutation spectrum and frequency described here is reiterated in the rest of the array, there is the potential for extensive telomere destabilization especially in mismatch repair-defective cells. This may in turn lead to a greater requirement for telomere length maintenance earlier in tumourigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.