Abstract

G-rich T-oligos (GT-oligos; oligonucleotides with homology to telomeres) elicit a DNA damage response in cells and induce cytotoxic effects in certain tumor cell lines. We have previously shown that GT-oligo inhibits growth, arrests cell cycle, and induces apoptosis in ovarian, pancreatic, and prostate cancer cells. However, not all ovarian cancer cell lines are susceptible to GT-oligo exposure. GT-oligo was found to induce transcript expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR-4 and DR-5, which are generally silenced in ovarian cancer cells, rendering them insensitive to TRAIL. Exposure of TRAIL- and GT-oligo-resistant cell lines to GT-oligo rendered them sensitive to the cytotoxic effects of TRAIL, producing more than additive inhibition of growth. An intracellular inhibitor of the extrinsic apoptotic pathway, FLICE-like Inhibitory Protein-Short (FLIPs), was down-regulated and Jun kinase (JNK) was activated by exposure to GT-oligo. JNK inhibition partially reversed the growth inhibition caused by the combination of GT-oligo and TRAIL indicating partial involvement of the Jun kinase pathway in the resulting cytotoxic effect. Both capase-8 and caspases 3/7 were activated by exposure to GT-oligo plus TRAIL, consistent with activation of the extrinsic apoptotic pathway. These results demonstrate a novel way of sensitizing resistant ovarian cancer cells to TRAIL-mediated cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.