Abstract
Telomere dysfunction and associated fusion-breakage in the mouse encourages epithelial carcinogenesis and a more humanized genomic profile that includes nonreciprocal translocations (NRTs). Here, array comparative genomic hybridization was used to determine the pathogenic significance of NRTs and to determine whether telomere dysfunction also drives amplifications and deletions of cancer-relevant loci. Compared to tumors arising in mice with intact telomeres, tumors with telomere dysfunction possessed higher levels of genomic instability and showed numerous amplifications and deletions in regions syntenic to human cancer hotspots. These observations suggest that telomere-based crisis provides a mechanism of chromosomal instability, including regional amplifications and deletions, that drives carcinogenesis. This model provides a platform for discovery of genes responsible for the major cancers affecting aged humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.