Abstract

Cellular senescence and biliary fibrosis are prototypical features of obliterative cholangiopathies, such as Primary Sclerosing Cholangitis (PSC). Telomere dysfunction can lead to senescence either through telomere erosion or damaged telomeres. Our goal was to investigate a mechanistic relationship between telomere damage and biliary fibrosis in PSC. Telomere attrition was observed in the bile ducts of PSC patients along with a reduction in telomerase reverse transcriptase (TERT) expression compared to normal livers. Similarly, liver tissue from mice models of biliary fibrosis showed telomere attrition with increased damage at telomeres measured as telomere-associated foci (TAF). Cellular models of senescence induction increased the TAFs in cholangiocytes. This coincided with decreased TERT expression and increased senescence, which was rescued by modulating TERT levels. Epigenetic analysis revealed increased acquisition of repressive histone methylation at the TERT promoter which correlated with decreased TERT transcription. Cholangiocyte-selective deletion of TERT in mice exacerbated fibrosis whereas androgen therapy towards telomerase rescued liver fibrosis and liver function in genetic mouse model of PSC. Our results demonstrate a mechanistic role for telomere dysfunction in cellular senescence and fibrosis that characterize PSC. This suggests that PSC may be, in part, a telomere biology disorder, and identifies TERT as a potential therapeutic target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.