Abstract

AbstractIn somatic cells, eroded telomeres can induce DNA double-strand break signaling, leading to a form of replicative senescence or apoptosis, both of which are barriers to tumorigenesis. However, cancer cells might display telomere dysfunctions which in conjunction with defects in DNA repair and apoptosis, enables them to circumvent these pathways. Chronic lymphocytic leukemia (CLL) cells exhibit telomere dysfunction, and a subset of these cells are resistant to DNA damage-induced apoptosis and display short telomeres. We show here that these cells exhibit significant resection of their protective telomeric 3′ single-stranded overhangs and an increased number of telomere-induced foci containing γH2AX and 53BP1. Chromatin immunoprecipitation and immunofluorescence experiments demonstrated increased levels of telomeric Ku70 and phospho-S2056-DNA-PKcs, 2 essential components of the mammalian nonhomologous end-joining DNA repair system. Notably, these CLL cells display deletions of telomeric signals on one or 2 chromatids in parallel with 11q22 deletions, or with 13q14 deletions associated with another chromosomal aberration or with a complex karyotype. Taken together, our results indicate that a subset of CLL cells from patients with an unfavorable clinical outcome harbor a novel type of chromosomal aberration resulting from telomere dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.