Abstract

During phagocytosis, tumor-associated macrophages (TAMs) can incorporate genetic material from tumor cells. The incorporation of extra genetic material may be responsible for advanced malignant behavior observed in some TAMs, making TAMs potentially important players in cancer progression. More recently, similar cells were described in the blood as cancer-associated macrophage-like cells (CAMLs). CAMLs may be equivalent to TAMs cells in the blood, and they express macrophage markers. However, their origin is still unclear. In a previous study, we showed for the first time the distinct telomere 3D structure of circulating tumor cells (CTCs) in melanoma and other cancers. In the present pilot study, we investigated, comparatively, the 3D telomere structure of CAMLs, CTCs and leucocytes from nine melanoma patients with metastatic cutaneous melanoma stage IV. CTC capture was performed by size-based filtration followed by cytological and immunocytological evaluation. Three-dimensional Quantitative Fluorescent in situ Hybridization was performed to measure differences in five 3D telomere parameters. Telomere parameters, such as number, length, telomere aggregates, nuclear volume, and a/c ratio, were compared among different cellular types (CTCs, CAMLs, and normal leucocytes). Three telomere parameters were significantly different between CAMLs and leucocytes. The combination of two telomere parameters (telomere length against the number of telomeres) resulted in the identification of two CAMLs subpopulations with different levels of genomic instability. Those populations were classified as profile 1 and 2. Profile 2, characterized by a high number of short telomeres, was observed in four of the nine melanoma patients. To our knowledge, this is the first pilot study to investigate 3D telomere parameters as hallmarks of nuclear architecture in CAMLs’ population in comparison to leucocytes from the same patient. Further studies involving a larger patient sample size are necessary to validate these findings and explore their potential prognostic value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.