Abstract

In most eukaryotes, the progressive loss of chromosome-terminal DNA sequences is counteracted by the enzyme telomerase, a reverse transcriptase that uses part of an RNA subunit as template to synthesize telomeric repeats. Many cancer cells express high telomerase activity and mutations in telomerase subunits are associated with degenerative syndromes including dyskeratosis congenita and aplastic anaemia. The therapeutic value of altering telomerase activity thus provides ample impetus to study the biogenesis and regulation of this enzyme in human cells and model systems. We have previously identified a precursor of the fission yeast telomerase RNA subunit (TER1)1 and have demonstrated that the mature 3′ end is generated by the spliceosome in a single cleavage reaction akin to the first step of splicing2. Directly upstream and partially overlapping with the spliceosomal cleavage site is a putative Sm protein binding site. Sm and Like-Sm (LSm) proteins belong to an ancient family of RNA binding proteins represented in all three domains of life3. Members of this family form ring complexes on specific sets of target RNAs and play critical roles in their biogenesis, function and turnover. We now demonstrate that the canonical Sm ring and the Lsm2-8 complex sequentially associate with fission yeast TER1. The Sm ring binds to the TER1 precursor, stimulates spliceosomal cleavage and promotes the hypermethylation of the 5′ cap by Tgs1. Sm proteins are then replaced by the Lsm2-8 complex, which promotes the association with the catalytic subunit and protects the mature 3′ end of TER1 from exonucleolytic degradation. Our findings define the sequence of events that occur during telomerase biogenesis and characterize roles for Sm and Lsm complexes as well as for the methylase Tgs1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.