Abstract

Premature ovarian failure (POF) refers to the presence of ovarian atrophic permanent amenorrhea in women under the age of 40. The pathogenesis of POF remains to be fully elucidated. Telocytes are a group of specialized cells with a small cell volume and very long cytoplasmic prolongations with dichotomous branching. Previous studies have indicated that telocytes function to support the trachea and serve as stem cell niches. Although it has been confirmed that telocytes are present in numerous organs in mammals, it remains to be determined whether they are present in ovarian tissues and whether they are involved in the development of POF. The present study used a cyclophosphamide-induced mouse model of POF. Hematoxylin and eosin staining and an enzyme-linked immunosorbent assay revealed that cyclophosphamide induced edema and apoptosis of ovarian stromal and granulosa cells and increased atretic follicles. In addition, cyclophosphamide induced abnormal peripheral blood FSH and E2 levels in mice. Transmission electron microscopy revealed a small number of telocyte-like cell structures in the ovarian stroma of wild-type mice. In addition, flow cytometry and immunohistochemical staining results suggested that the number of cluster of differentiation (CD)34/platelet-derived growth factor receptor (PDGFR)α, CD34/PDGFRβ and CD34/vimentin double-positive cells in the ovaries of POF mice was significantly decreased compared with wild-type mice. In conclusion, mouse ovarian tissues appear to contain telocytes, and cyclophosphamide treatment significantly reduced the number of ovarian telocytes. Therefore, telocytes may serve as a potential novel marker of POF induced by cyclophosphamide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.