Abstract

Telmisartan broadly used for the treatment of hypertension that is also known for its anticancer properties. TRAIL has the potential to kill tumor cells with minimal toxicity in normal cells by binding to death receptors, DR4 and DR5. Unfortunately, these TRAIL-death receptors have failed as most human cancers are resistant to TRAIL-mediated apoptosis. In this study, we evaluated telmisartan as a novel TRAIL-DR5-targeting agent with the aim of rendering TRAIL-based cancer therapies more active. Herein, we demonstrated that telmisartan could sensitize TRAIL and enhance NSCLC tumor cell death. The molecular mechanism includes the blocking of AMPK phosphorylation causes inhibition of autophagy flux by telmisartan resulting in ROS generation leading to death receptor (DR5) upregulation and subsequent activation of the caspase cascade by TRAIL treatment. Furthermore, using chloroquine and siATG5 significantly enhances ROS production and application of the ROS scavenger N-acetyl-cysteine (NAC) rescues the cells undergoing apoptosis by abrogating the expression of DR5 and finally the caspase cascade. Additionally, NAC treatment also maintains autophagy flux and makes the cells unresponsive to TRAIL. In summary, telmisartan in combination with TRAIL exhibits enhanced cytotoxic capacity toward lung cancer cells, thereby providing the potential for effective and novel therapeutic approaches to treat lung cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.