Abstract

Restrictions imposed by gauge invariance in noncommutative spaces together with the effects of ultraviolet/infrared mixing lead to strong constraints on possible candidates for a noncommutative extension of the Standard Model. In this paper, we study a general class of 4-dimensional noncommutative models consistent with these restrictions. Specifically we consider models based upon a gauge theory with the gauge group U(N_1)\times U(N_2) \times ... \times U(N_m) coupled to matter fields transforming in the (anti)-fundamental, bi-fundamental and adjoint representations. Noncommutativity is introduced using the Weyl-Moyal star-product approach on a continuous space-time. We pay particular attention to overall trace-U(1) factors of the gauge group which are affected by the ultraviolet/infrared mixing. We show that, in general, these trace-U(1) gauge fields do not decouple sufficiently fast in the infrared, and lead to sizable Lorentz symmetry violating effects in the low-energy effective theory. Making these effects unobservable in the class of models we consider would require pushing the constraint on the noncommutativity mass scale far beyond the Planck mass (M_{NC}\gtrsim 10^{100} M_{P}) and severely limits the phenomenological prospects of such models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.