Abstract
The use of natural language to indicate robot tasks is a convenient way to command robots. As a result, several models and approaches capable of understanding robot commands have been developed, which, however, complicates the choice of a suitable model for a given scenario. In this work, we present a comparative analysis and benchmarking of four natural language understanding models - Mbot, Rasa, LU4R, and ECG. We particularly evaluate the performance of the models to understand domestic service robot commands by recognizing the actions and any complementary information in them in three use cases: the RoboCup@Home General Purpose Service Robot (GPSR) category 1 contest, GPSR category 2, and hospital logistics in the context of the ROPOD project.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.