Abstract

The sustained increase of users and the request for advanced multimedia services are amongst the key motivations for designing new high-capacity cellular telecommunication systems. The proposals that are being pursued by several studies and field implementations consider hierarchical architectures and dynamic resource allocation. A hierarchical cellular communication network is analyzed, taking user mobility into account and exploiting dynamic channel-allocation schemes. In particular, a finite number of users has been considered, moving at different speeds in a geographical region covered by a finite number of cells structured in two hierarchical levels: micro- and macrocells. For such a system, mobility and traffic models have been developed, both based on queueing networks analyzing maximum packing (MP), a dynamic channel-allocation scheme. The obtained results, validated by simulation experiments, allow the evaluation of main system-performance parameters in terms of new-call and handoff blocking probabilities, and forced-termination probability as a function of load and system parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call