Abstract

SUMMARYIn this paper, control of nonlinear teleoperator systems where both the master and slave systems are kinematically redundant robot manipulators is addressed. The controller is developed under the assumption that the user and environmental input forces are unmeasurable. Lyapunov-based stability analysis is used to prove that the proposed controller yields asymptotic tracking results and ensures the coordination of the master and slave systems while satisfying a sub-task objective. Numerical simulation results are presented to illustrate the effectiveness of the proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.