Abstract

Mobile rescue robots used in search and rescue missions must be able to navigate in unknown environments and map these environments. In such situations, three-dimensional (3D) data obtained by a laser range finder is very useful for supporting teleoperation of robots to locate victims and aid rescue crews in devising rescue strategies. However, when using conventional scanning systems to obtain such 3D data, the operators must wait for a few seconds and halt the operation of the rescue robot. To solve this time-loss-problem, our research group proposed a continuous acquisition system for acquiring 3D environment data for tracked vehicles using the 3D odometry with gyroscope. In locomotion issues, actuated subtracks, attached at the front and the back of the main body to improve stability of the robot, are commonly used to navigate on rough terrains, overcome large obstacles, and maneuver up or down stairs. However, managing actuated subtracks is difficult for the operator because only a small amount of information about the robot pose and environment is available. To assist the operators, our research group developed an autonomous control system based on the terrain data obtained using laser range finders for actuated sub-tracks. In this study, on the basis of the above systems, we developed a teleoperation system for mobile robots that functions effectively under conditions of time-delayed and narrow bandwidth wireless communication. In this paper, we introduce our teleoperation system and report the results of experiments performed to validate the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.