Abstract

In humans, motion sickness is associated with disruption of normal gastric myoelectric activity, and it has been proposed that this results from an imbalance of autonomic nervous system activity. We used the established Suncus murinus (house musk shrew) model of motion-induced emesis to investigate the effect of horizontal motion on gastric myoelectric activity (recorded using telemetry) and the involvement of the abdominal vagi. Surgical vagotomy increased baseline dysrhythmia and reduced the dominant power of the gastric myoelectric signals. In response to motion, normal gastric myoelectric activity was reduced in sham-operated animals but not in vagotomized animals. Vagotomy, however, failed to affect motion-induced emesis. In conclusion, motion had a differential effect in sham-operated and vagotomized animals, which is consistent with the hypothesis that motion-induced dysrhythmia arises from an autonomic nervous system imbalance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.