Abstract

AbstractOrganic semiconductor molecules possess chemical tunability and large stimulated emission cross section, representing a promising candidate for laser gain medium. However, for the pursuit of telecom‐wavelength organic lasers, one of the major obstacles is the lack of effective energy‐level systems with high optical gain to compensate the exciton deactivation losses. Herein, the effects of molecular conformation‐dependent distinct cascaded proton‐transfer six‐level energy gain systems on lasing emission properties are systematically investigated based on organic polymorphs, proving that an energy‐level gain system without reversible transition channels is more conducive to the formation of efficient population inversion and high optical gain. Notably, the one‐way irreversible six‐level energy system of β‐phase polymorph supports more favorable population inversions than the two‐way reversible six‐level system of α‐phase polymorph due to the irreversible excited‐state second proton transfer and the irreversible ground‐state recovery, achieving the amplified spontaneous emission at telecom‐wavelength of ≈850 nm. This study provides useful guidelines for constructing efficient energy‐level gain systems, promoting the exploration of high‐gain organic semiconductor laser materials from visible to near‐infrared region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.