Abstract
The development of robotic partners to take care of daily human life has been expanded recently. Mobile robots have spread their presence within the public environment to assist people in a variety of problematic activities. Mobile Robots are developed with the underlying artificial intelligence technology. Adequate training is provided to the mobile robots under the classifications of supervised learning. The interaction of robots is very important to practice everything that is told to the robotic systems from domestic robots to high-risk work environments that threaten the health of the spinal cord, which focuses on robotic support during the COVID-19 epidemic. In the present research work, a mobile agent is trained using Computerized Tomography (CT) scan reports and X-rays under VGG-16 processing standards for classifying covid and non-covid patients. A hybrid model is designed using Deep Learning Network (DNN) and Convolutional Neural Network (CNN). CNN is trained using images collected using a camera and thermal camera with RGB values ranging from 0 to 255. The advantage of the proposed model in training the mobile agent is making use of CT scan and X-ray images and providing recommendations to the victim about the criticality of being affected by covid. In addition to that, the Machine Learning Algorithm like Decision Tree and Random Forest is constructed and achieved a classification accuracy of 95%. The proposed technique has efficiently provided a reliable recommendation system based on ReLu activation. The other evaluation parameters used to estimate the performance of the proposed model are precision, recall, F1-score. The proposed model achieves 0.84 Precision over the inception technique with 0.79 precision. The reason behind the improvement of accuracy in the present work is the filter used to extract the features.
Highlights
The development of robotic partners to take care of daily human life has been expanded recently
Henrik Christen, the director of the UC San Diego Contextual Robotics institute said that "Robots are designed by engineers for engineers ", which implied that robots are not easy to operate
By using Decision Tree (DT) and feature selection as entropy leads to the classification
Summary
The development of robotic partners to take care of daily human life has been expanded recently. The safety measures like regular washing of hands, wearing masks, maintaining selfhygiene, maintaining social distancing can keep the virus in control In such a threatening scenario in order to save the health care sectors and the. The proposed system a hybrid model is engineered that is designed using Deep Learning Network (DNN) and Convolutional Neural Network (CNN). The advantage of the proposed model in training the mobile agent is making use of CT scan and X-ray images and providing recommendations to the victim about the criticality of being affected by covid
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of ADVANCED AND APPLIED SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.