Abstract

TEL is an ETS family transcription factor that is critical for maintaining hematopoietic stem cells in adult bone marrow. To investigate the roles of TEL in myeloid proliferation and differentiation, we introduced TEL cDNA into mouse myeloid 32Dcl3 cells. Overexpression of TEL repressed interleukin-3-dependent proliferation through blocking cell cycle progression. Also, the presence of TEL triggered apoptosis through the mitochondrial intrinsic pathway on exposure to granulocyte colony-stimulating factor. We found an increase in p53 protein and its DNA binding in the TEL-overexpressing cells. Forced expression of TEL stimulated transcription via the p53-responsive element and increased the expression of cellular target genes for p53 such as cell cycle regulator p21 and apoptosis inducer Puma. Consistently, induction of apoptosis was delayed by pifithrin-α treatment and completely blocked by increased expression of Bcl-2 in the TEL-overexpressing cells. These data collectively suggest that TEL exerts a tumor suppressive function through augmenting the p53 pathway and facilitates normal development of myelopoiesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call