Abstract

This paper presents TeknoAssistant, a domain-specific tech mining method for building a problem–solution conceptual network aimed at helping technicians from a particular field to find alternative tools and pathways to implement when confronted with a problem. We evaluate our approach using Natural Language Processing field, and propose a 2-g text mining process adapted for analyzing scientific publications. We rely on a combination of custom indicators with Stanford OpenIE SAO extractor to build a Bernoulli Naïve Bayes classifier which is trained by using domain-specific vocabulary provided by the TeknoAssistant user. The 2-g contained in the abstracts of a scientific publication dataset are classified in either “problem”, “solution” or “none” categories, and a problem–solution network is built, based on the co-occurrence of problems and solutions in the abstracts. We propose a combination of clustering technique, visualization and Social Network Analysis indicators for guiding a hypothetical user in a domain-specific problem solving process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.