Abstract

AbstractEnergy consumption and peak temperatures on MPSoCs are growing exponentially as transistor density increases, rendering systems unstable. Thus, in modern real-time systems, fault-tolerance is an essential design feature. This paper proposes TEFRED, a heuristic scheduling strategy that addresses the problem of controlling energy and peak temperature levels simultaneously on systems with two types of cores while remaining resistant to transient faults. Our experimental results demonstrate that TEFRED can save considerable energy and lower core peak temperatures compared to a state-of-the-art energy-efficient fault-tolerant scheduler. KeywordsHeterogeneousFault-tolerantTemperatureEnergy

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.