Abstract

: Elementary flux modes (EFMs) are important structural tools for the analysis of metabolic networks. It is known that many topologically feasible EFMs are biologically irrelevant. Therefore, tools are needed to find the relevant ones. We present thermodynamic tEFM analysis (tEFMA) which uses the cellular metabolome to avoid the enumeration of thermodynamically infeasible EFMs. Specifically, given a metabolic network and a not necessarily complete metabolome, tEFMA efficiently returns the full set of thermodynamically feasible EFMs consistent with the metabolome. Compared with standard approaches, tEFMA strongly reduces the memory consumption and the overall runtime. Thus tEFMA provides a new way to analyze unbiasedly hitherto inaccessible large-scale metabolic networks. https://github.com/mpgerstl/tEFMA CONTACT: : christian.jungreuthmayer@boku.ac.at or juergen.zanghellini@boku.ac.at Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call