Abstract
AbstractAccurately classify teeth category is important in further dental diagnosis. Analyzing huge dental data, that is, identifying the teeth category, is often a hard task. Current automatic methods are based on computer vision and deep learning approaches. In this study, we aimed to classify the teeth category into four classes: incisor, canine, premolar, and molar. Cone beam computed tomography was used to collect the data. We proposed a seven‐layer deep convolutional neural network with global average pooling to identify teeth category. Data augmentation method was used to enlarge the size of training dataset. The results showed the sensitivities of incisor, canine, premolar, and molar teeth are 88%, 86%, 84%, and 90%, respectively. The average sensitivity is 87.0%. We validated max pooling gives better results than average pooling. Our method is better than three state‐of‐the‐art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Imaging Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.