Abstract

In 1997, the United States Nuclear Regulatory Commission amended its criteria under which patients administered radioactive materials could be released from the hospital. The revised criteria ensures that the total effective dose equivalent (TEDE) to any individual exposed to the released patient will not likely exceed 5 mSv. Licensees are recommended to use one of the three options to release the patient in accordance with these regulatory requirements: administered activity, measured dose rate, or patient-specific dose calculation. The NRC's suggested calculation method is based on the assumption that the patient (source) and a family member (target) are each considered to be points in space. This point source/target assumption has been shown to be conservative in comparison to more realistic guidelines. In this present study, the effective doses to family members were calculated using a series of revised Oak Ridge National Laboratory stylised phantoms coupled with a Monte Carlo radiation transport code. A set of TEDE per cumulated activity values were calculated for three different distributions of (131)I (thyroid, abdomen and whole body), various separation distances and two exposure scenarios (face-to-face standing and side-by-side lying). The results indicate that an overestimation of TEDE per cumulated activity based on the point source/target method was >2-fold. The values for paediatric phantoms showed a strong age-dependency, which showed that dosimetry for children should be separately considered instead of using adult phantoms as a substitute. On the basis of the results of this study, a licensee may use less conservative patient-specific release criteria and provide the patient and the family members with more practical dose avoidance guidelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.