Abstract
Computational approaches to detect the signals of adverse drug reactions are powerful tools to monitor the unattended effects that users experience and report, also preventing death and serious injury. They apply statistical indices to affirm the validity of adverse reactions reported by users. The methodologies that scan fixed duration intervals in the lifetime of drugs are among the most used. Here we present a method, called TEDAR, in which ranges of varying length are taken into account. TEDAR has the advantage to detect a greater number of true signals without significantly increasing the number of false positives, which are a major concern for this type of tools. Furthermore, early detection of signals is a key feature of methods to prevent the safety of the population. The results show that TEDAR detects adverse reactions many months earlier than methodologies based on a fixed interval length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.