Abstract

Although there are several works on providing event-based services in pervasive environment or WSN, most of them have not considered composite event detection in an energy-efficient fashion. Composite events consist of multiple primitive events with temporal and spatial relations and are much more difficult to manage. Because of the resource constraints in WSN, existing event detection algorithms may not be suitable for WSN when energy efficiency is considered. In this paper, we propose TED (Type-based composite Event Detection), a distributed composite event detection algorithm. The essential idea of TED is type-based event fusion, where some sensor nodes are selected as fusion points. Then lower-level events will be fused on these fusion points for detection of higher-level composite events. Each composite event type is assigned to certain fusion point for detection so that the composite events may be detected in-network instead of at the sink. Event fusion with minimum energy cost is an NP-complete problem. We propose a distributed randomized algorithm to solve the problem. We analyze the energy efficiency of TED to show both its effectiveness and efficiency. By carrying out both simulation and real world experiments on TED, we show that TED can reduce the energy cost by 10–20% in event-based WSN applications compared with naive event detection mechanism where the event relations are not considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.